Effect of vacuum thermal annealing to encapsulated graphene field effect transistors

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible Graphene Field-Effect Transistors Encapsulated in Hexagonal Boron Nitride.

Flexible graphene field-effect transistors (GFETs) are fabricated with graphene channels fully encapsulated in hexagonal boron nitride (hBN) implementing a self-aligned fabrication scheme. Flexible GFETs fabricated with channel lengths of 2 μm demonstrate exceptional room-temperature carrier mobility (μFE = 10 000 cm(2) V(-1) s(-1)), strong current saturation characteristics (peak output resist...

متن کامل

Fabrication of SWCNT-Graphene Field-Effect Transistors

Graphene and single-walled carbon nanotube (SWCNT) have been widely studied because of their extraordinary electrical, thermal, mechanical, and optical properties. This paper describes a novel and flexible method to fabricate all-carbon field-effect transistors (FETs). The fabrication process begins with assembling graphene grown by chemical vapor deposition (CVD) on a silicon chip with SiO2 as...

متن کامل

Graphene field-effect transistors with ferroelectric gating.

Recent experiments on ferroelectric gating have introduced a novel functionality, i.e., nonvolatility, in graphene field-effect transistors. A comprehensive understanding in the nonlinear, hysteretic ferroelectric gating and an effective way to control it are still absent. In this Letter, we quantitatively characterize the hysteretic ferroelectric gating using the reference of an independent ba...

متن کامل

Energy dissipation in graphene field-effect transistors.

We measure the temperature distribution in a biased single-layer graphene transistor using Raman scattering microscopy of the 2D-phonon band. Peak operating temperatures of 1050 K are reached in the middle of the graphene sheet at 210 kW cm(-2) of dissipated electric power. The metallic contacts act as heat sinks, but not in a dominant fashion. To explain the observed temperature profile and he...

متن کامل

Graphene field effect transistors for bioelectronic applications

The development of the future generation of neuroprosthetic devices will require the advancement of novel solid-state sensors with a further improvement in the signal detection capability, a superior stability in biological environments, and a more suitable compatibility with living tissue. Due to the maturity of Si technology, Si-based MOSFETs have been extensively used in previous decades for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena

سال: 2016

ISSN: 2166-2746,2166-2754

DOI: 10.1116/1.4952409